Evolution of Atmospheric Oxygen

نویسنده

  • D Catling
چکیده

changes in sea ice thickness and the relative amounts of open water on surface air temperatures through the year. Figure 2 shows that the impact on the surface air temperatures is rather small during the summer; however, during the winter, when there is a large difference between the surface temperature of ocean water and of sea ice, the impact of small changes in the area of open ocean on surface air temperature is large. When areas of open ocean are eliminated, during the winter, the atmosphere is cut off from a heat source, namely the relatively warm ocean, and surface air temperatures drop by between 0.4K and 1.2K during the winter. When areas of open ocean are increased during the winter, the atmosphere is in contact with an expanded heat source, and surface air temperatures increase by up to 2.0Kwhen sea ice is allowed to form, and much more when it is not. The use of energy balance models in this kind of study permit further investigation to identify which energy fluxes contribute to the simulated changes in surface air temperature and under what conditions each energy flux is the most important.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coping with cyclic oxygen availability: evolutionary aspects.

Both the gradual rise in atmospheric oxygen over the Proterozoic Eon as well as episodic fluctuations in oxygen over several million-year time spans during the Phanerozoic Era, have arguably exerted strong selective forces on cellular and organismic respiratory specialization and evolution. The rise in atmospheric oxygen, some 2 billion years after the origin of life, dramatically altered cell ...

متن کامل

Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance.

Uniformitarian approaches to the evolution of terrestrial locomotor physiology and animal flight performance have generally presupposed the constancy of atmospheric composition. Recent geophysical data as well as theoretical models suggest that, to the contrary, both oxygen and carbon dioxide concentrations have changed dramatically during defining periods of metazoan evolution. Hyperoxia in th...

متن کامل

Structural, magnetic and dielectric properties of pure and Dy-doped Co3O4 nanostructures for the electrochemical evolution of oxygen in alkaline media

In this study, spinel-type cobalt oxide (Co3O4) and Co3-xDyxO4 (x = 0.04 and 0.05 molar ratio) nanoparticles were synthesized via combustion method at 700 °C. Crystallite nature, phase purity and thermal analysis of the prepared compounds were investigated by PXRD, FT-IR and TGA techniques. Structural analyses were performed by the FullProf program employing profile matching with constant scale...

متن کامل

Nickel Oxide/Carbon Nanotubes as Active Hybrid Material for Oxygen Evolution Reaction

Carbon nanotubes are of great interest due to their high surface area and rich edge sites, which are favorable for wide applications. Here, a simple and efficient routine is presented by decoration of multi-wall carbon nanotube (MWCNT) with nickel oxide (NiO) nanoparticles.The morphologies of NiO-MWCNT  were  investigated  by  using scanning  electron  microscope  (SEM)  and energydispersive X-...

متن کامل

Atmospheric oxygen level and the evolution of insect body size.

Insects are small relative to vertebrates, possibly owing to limitations or costs associated with their blind-ended tracheal respiratory system. The giant insects of the late Palaeozoic occurred when atmospheric PO(2) (aPO(2)) was hyperoxic, supporting a role for oxygen in the evolution of insect body size. The paucity of the insect fossil record and the complex interactions between atmospheric...

متن کامل

Environmental and biotic controls on the evolutionary history of insect body size.

Giant insects, with wingspans as large as 70 cm, ruled the Carboniferous and Permian skies. Gigantism has been linked to hyperoxic conditions because oxygen concentration is a key physiological control on body size, particularly in groups like flying insects that have high metabolic oxygen demands. Here we show, using a dataset of more than 10,500 fossil insect wing lengths, that size tracked a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003